

Übersicht zu den Förderaufgaben

Förderschritte zu den Diagnoseaufgaben "Geometrische Objekte", Stufe D, E, F, G: Aufgabe 2

- 1. Beschriften von Dreiecken
- 2. Anwenden der Dreiecksungleichung (1)
- 3. Anwenden der Dreiecksungleichung (2)
- 4. Finden verschiedener Dreiecksarten
- 5. Untersuchen der Winkel in besonderen Dreiecken (1)
- 6. Untersuchen der Winkel in besonderen Dreiecken (2)
- Benennen von Basis, Schenkeln und Basiswinkeln
- 8. Beschriften von rechtwinkligen Dreiecken
- 9. Finden von Höhen in Dreiecken (1)
- 10. Finden von Höhen in Dreiecken (2)
- 11. Finden von Höhen in Dreiecken (3)
- 12. Zeichnen von Höhen in Dreiecken (1)
- 13. Erkennen von Höhen in Dreiecken
- 14. Zeichnen von Höhen in Dreiecken (2)
- 15. Zeichnen von Höhen in Dreiecken (3)
- 16. Zeichnen von Höhen in Parallelogramme (1)
- 17. Zeichnen von Höhen in Parallelogramme (2)
- 18. Zerschneiden von Parallelogrammen und Legen zu Rechtecken
- 19. Zerschneiden von Parallelogrammen
- 20. Legen von Parallelogrammen aus zwei kongruenten Dreiecken
- 21. Vergleichen der Flächeninhalte von Parallelogrammen und Dreiecken
- 22. Berechnen des Flächeninhalts von Dreieck und Parallelogramm
- 23. Zuordnen der Merkmale zu den Dreiecksarten (Winkel)
- 24. Zuordnen der Merkmale zu den Dreiecksarten (Seiten)
- 25. Zuordnen der Merkmale zu den Dreiecksarten (Seiten und Winkel)

Förderschritte zu den Diagnoseaufgaben "Geometrische Objekte", Stufe D, E, F, G: Aufgabe 1

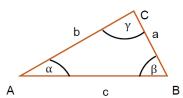
- 26. Erkennen von (geraden) Prismen
- 27. Erkennen von Prismen in realen Objekten
- 28. Erkennen von Kanten (Prisma mit dreieckiger Grundfläche)
- 29. Erkennen von Netzen (Prismen mit dreieckiger Grundfläche)
- 30. Erkennen von Kanten (Prisma mit viereckiger Grundfläche)
- 31. Erkennen von Netzen (Prismen mit viereckiger Grundfläche)
- 32. Erkennen von Kanten (Pyramide)
- 33. Erkennen von Netzen (Pyramiden)
- 34. Erkennen von Netzen (Zylinder)
- 35. Vergleichen von Zylinder und Prisma
- 36. Bestimmen des Prismenvolumens mithilfe von Würfeln
- 37. Bestimmen der Grundfläche einer Schicht
- 38. Bestimmen des Prismenvolumens mithilfe von Schichten
- 39. Erklären der Volumenformel für Prismen
- 40. Finden von Grundfläche und Höhe im Prisma
- 41. Berechnen des Volumens eines Prismas (1)
- 42. Berechnen des Volumens eines Prismas mit vorgegebener Grundfläche
- 43. Berechnen des Volumens eines Prismas (2)

Übersicht zu den Förderaufgaben

Förderschritte zu den Diagnoseaufgaben "Geometrische Objekte", Stufe D, E, F, G: Aufgabe 1 (Fortsetzung)

- 44. Vergleichen von Volumina
- 45. Angeben des richtigen Formelterms
- 46. Aufstellen der Volumenformel für Pyramiden
- 47. Finden von Körpern mit gleich großem Volumen
- A-P Kopiervorlagen

Beschriften von Dreiecken


ı

Material: Kopiervorlage A

Fülle den Lückentext mithilfe der Abbildung sinnvoll aus.

Definition Dreieck: Ein Dreieck ist eine **ebene** Figur. Es besteht aus drei Strecken (Seiten); jeweils zwei Strecken haben einen gemeinsamen Punkt.

- Die drei Seiten werden häufig mit kleinen Buchstaben bezeichnet, z. B. ____, ___ und ___.
 Es sind auch andere Bezeichnungen der Seiten möglich.
- Die **Eckpunkte** werden mit großen Buchstaben, z. B. ___, __ und ___ (passend zu den gegenüberliegenden Seiten), gekennzeichnet.
- Die Beschriftung erfolgt gegen den Uhrzeigersinn.
- In einem Dreieck gibt es drei **Innenwinkel**, die üblicherweise passend zu ihren Eckpunkten mit griechischen Buchstaben benannt werden, z. B. ___ , __ und ___ .

• Beschrifte die Dreiecke (aus der Kopiervorlage A) vollständig.

Kopiervorlage A

Bild. "Beschriftetes Dreieck", Diebold für LISUM, 2022, cc by sa 4.0

Raum	unc	l F	orı	m
Sekur	ndar	sti	ıfe	Ĺ

Geometrische Objekte

Anwenden der Dreiecksungleichung (1)

2

Material: Stäbchen in unterschiedlichen Längen

- Wähle die Stäbchen in den gegebenen Längen aus.
- Lege die Dreiecke.
- Gibt es das jeweilige Dreieck?

Seitenlänge a	Seitenlänge b	Seitenlänge c	Gibt es das Dreieck?
6 cm	3 cm	6 cm	
2 cm	3 cm	6 cm	
5 cm	3 cm	6 cm	
1 cm	2 cm	3 cm	
4 cm	4 cm	4 cm	

Es liegt an den Seitenlängen, ob es ein Dreieck gibt oder nicht.

• Formuliere eine allgemeine Regel.

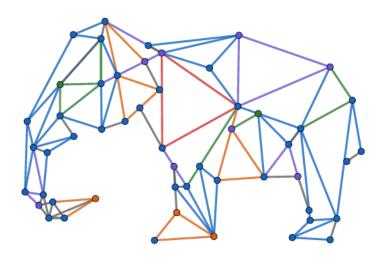
Anwenden der Dreiecksungleichung (2)

• Entscheide, ob es das jeweilige Dreieck gibt.

Seitenlänge a	Seitenlänge b	Seitenlänge c	Gibt es das Dreieck?
5,2 cm	2,1 cm	7,3 cm	
1 cm	1 cm	1 cm	
3 cm	1 cm	2 cm	
2 cm	3 cm	4 cm	
4 cm	4 cm	4,5 cm	

Raum und Form Sekundarstufe I

Geometrische Objekte


Finden verschiedener Dreiecksarten

4

3

- Bestimme die Dreiecksarten in dem Elefanten.
- Finde stumpfwinklige (1), gleichseitige (2), spitzwinklige (3), rechtwinklige (4) und gleichschenklige Dreiecke (5).

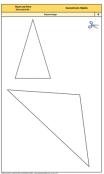
Trage die Nummern in Klammern im jeweiligen Dreieck des Elefanten ein.

Untersuchen der Winkel in besonderen Dreiecken (1)

Material: Kopiervorlage B

• Wähle für beide Dreiecke den richtigen Begriff aus und ergänze damit den Satz.

Die Dreiecke sind ______.


gleichseitig

gleichschenklig

5

unregelmäßig

- Schneide die Dreiecke aus.
- Zeige durch Falten, dass genau zwei Winkel gleich groß sind.

Kopiervorlage B

Raum und Form Sekundarstufe I

Geometrische Objekte Argumentieren

Untersuchen der Winkel in besonderen Dreiecken (2)

6

Material: Kopiervorlage C

Wähle den richtigen Begriff aus und ergänze damit den Satz.

Das Dreieck ist _____ .

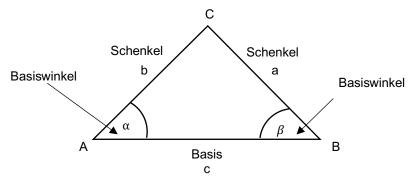
gleichseitig

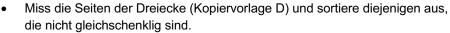
gleichschenklig

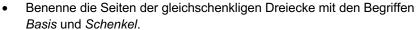
unregelmäßig

- Schneide das Dreieck (aus der Kopiervorlage C) aus und reiße die Ecken des Dreiecks ab.
- Lege die drei Winkel des Dreiecks aufeinander. Was stellst du fest?
- Lege die drei Winkel aneinander. Was stellst du fest?
- Wie groß ist jeder Winkel in diesem Dreieck? Erkläre.

Kopiervorlage C


Benennen von Basis, Schenkeln und Basiswinkeln


7


Material: Kopiervorlage D


Das gleichschenklige Dreieck

In einem gleichschenkligen Dreieck werden die zwei gleich großen Winkel als *Basiswinkel* bezeichnet.

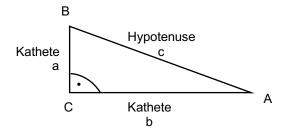
Kopiervorlage D

Bild: "Beschriftetes gleichschenkliges Dreieck", Diebold für LISUM, 2022, cc by sa 4.0

Raum und Form Sekundarstufe I

Geometrische Objekte

Beschriften von rechtwinkligen Dreiecken


8

Material: Kopiervorlage D

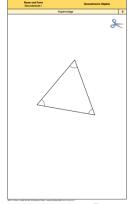
Das rechtwinklige Dreieck

٩

Die Seite, die einem rechten Winkel gegenüberliegt, heißt *Hypotenuse*. Die anderen beiden Seiten heißen *Katheten*, sie sind kürzer als die Hypotenuse.

- Überprüfe zuerst, ob die Dreiecke rechtwinklig sind.
- Beschrifte bei den rechtwinkligen Dreiecken die Seiten mit den Begriffen *Hypotenuse* und *Kathete*.

Kopiervorlage D



Finden von Höhen in Dreiecken (1)

Material: Kopiervorlage E

Dieses Dreieck (siehe Kopiervorlage E) ist gleichseitig.

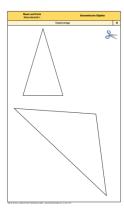
- Schneide es aus und falte es in der Mitte.
 Die beiden Hälften, die entstehen, sollen genau übereinanderliegen.
- Welche Art von Dreieck ist durch das Falten entstanden?
- Gibt es noch mehr Möglichkeiten, das Dreieck so zu falten, dass ein Eckpunkt auf einem anderen liegt?

9

Kopiervorlage E

Raum und Form Sekundarstufe I

Geometrische Objekte


Finden von Höhen in Dreiecken (2)

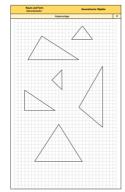
10

Material: Kopiervorlage B

Diese Dreiecke (siehe Kopiervorlage B) sind gleichschenklig.

- Schneide sie aus und falte sie so, dass die beiden Hälften, die jeweils entstehen, genau übereinanderliegen.
- Beschreibe, wie du gefaltet hast. Nutze für deine Beschreibung die Begriffe: Schenkel, Basis, Basiswinkel.
- Welche Art von Dreieck ist durch das Falten entstanden?

Kopiervorlage B



Finden von Höhen in Dreiecken (3)

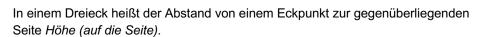
11

Material: Kopiervorlage F

- Schneide die Dreiecke (Kopiervorlage F) aus.
 Versuche, sie so zu falten, dass die beiden Teile, die jeweils entstehen, genau übereinanderliegen.
- Lassen sich alle Dreiecke in zwei gleich große Teile falten?
 Erkläre, bei welchen Arten von Dreiecken das funktioniert.
- Zeichne anschließend bei diesen Dreiecken die Linie nach, an der du gefaltet hast. Diese Linie heißt *Höhe*.

Kopiervorlage F

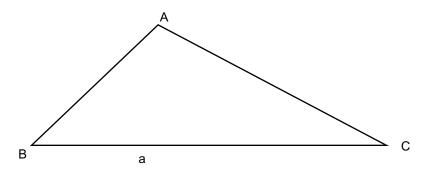
Raum und Form Sekundarstufe I



Geometrische Objekte

Zeichnen von Höhen in Dreiecken (1)

12


Material: Geodreieck

Diese Höhe steht immer senkrecht zur entsprechenden Seite.

- Zeichne die Höhe (ha) auf die Seite a ein.
- Beschreibe, wie das Geodreieck dabei angelegt werden muss.

Erkennen von Höhen in Dreiecken

13

Nebenstehend sind in den Dreiecken Strecken eingezeichnet, die von einem Eckpunkt zur gegenüberliegenden Seite verlaufen.

 Entscheide, welche dieser Strecken Höhen sind. Begründe.

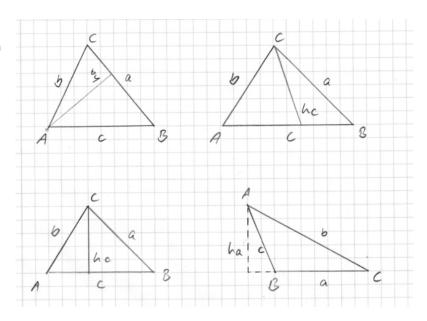
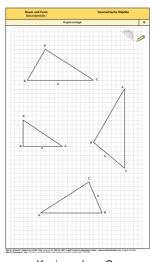


Bild: "Foto eingezeichnete Linien/Höhen in Dreiecken", Diebold für LISUM, 2022, cc by sa 4.0

Raum und Form Sekundarstufe I

Geometrische Objekte


Zeichnen von Höhen in Dreiecken (2)

14

Material: Geodreieck, Kopiervorlage G

- Zeichne in jedem Dreieck die Höhe auf die Seite a.
- Markiere einen rechten Winkel, der dabei entstanden ist.
- Erkläre, bei welchen Dreiecken Besonderheiten auftreten.

Kopiervorlage G

Raum und Form Sekundarstufe I

Geometrische Objekte

Zeichnen von Höhen in Dreiecken (3)

15

Material: Geodreieck

- Zeichne die Höhen auf die Seiten a, b und c ein.
- Beschrifte sie mit ha, hb und hc.
- Was fällt dir auf?

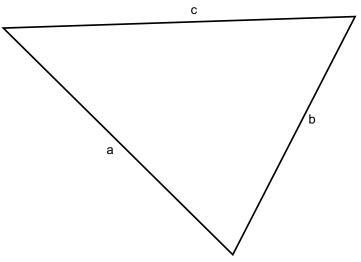
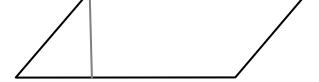


Bild: "Geodreiecke", © mbnachhilfe_de, 2015. Geodreieck, pixabay-lizenz. Verfügbar unter: https://pixabay.com/de/illustrations/geodreieck-geometrie-mathematik-1016726, Zugriff am: 6.7.2020

Raum und Form Sekundarstufe I

Geometrische Objekte


Zeichnen von Höhen in Parallelogramme (1)

16

Material: Geodreieck

Sandra hat die Höhe in dem Parallelogramm eingezeichnet.

- Erkläre, warum dies eine mögliche Höhe des Parallelogramms ist.
- Zeichne eine zweite mögliche Höhe in das Parallelogramm ein.

Zeichnen von Höhen in Parallelogramme (2)

17

Material: Geodreieck, Kopiervorlage H

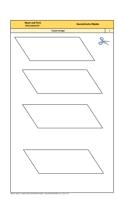
• Erkläre, warum die eingezeichneten Strecken in dem Parallelogramm Höhen sind.

- Zeichne in jedes Parallelogramm (Kopiervorlage H) an jeweils drei Stellen Höhen ein.
- Überlege, unter welcher Bedingung die Höhe zugleich auch eine Seite des Parallelogramms ist.

Kopiervorlage H

Bild: "Geodreiecke", © mbnachhilfe_de, 2015. Geodreieck, pixabay-lizenz. Verfügbar unter: https://pixabay.com/de/illustrations/geodreieck-geometrie-mathematik-1016726, Zugriff am: 6.7.2020

Raum und Form Sekundarstufe I


Geometrische Objekte

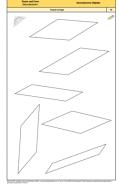
Zerschneiden von Parallelogrammen und Legen zu Rechtecken

18

Material: Schere, Kopiervorlage I

- Schneide die Parallelogramme aus.
- Lege ein Parallelogramm beiseite. Zeichne bei den drei anderen Parallelogrammen je eine Höhe an verschiedenen Stellen ein.
- Schneide die drei Parallelogramme der Höhe entlang auseinander. Lege die Teile eines Parallelogramms so wieder an, dass ein Rechteck entsteht.
- Verändert sich die Größe der Fläche, wenn das Parallelogramm zu einem Rechteck zusammengesetzt wird?
 Vergleiche mit dem unzerschnittenen Parallelogramm und erkläre.
- Vergleiche auch alle entstandenen Rechtecke. Was fällt dir auf?

Kopiervorlage I



Zerschneiden von Parallelogrammen

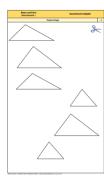
19

Material: Schere, Kopiervorlage H

- Zeichne in jedes der Parallelogramme eine Diagonale ein.
- Schneide die Parallelogramme aus.
- Zerschneide die Parallelogramme entlang der Diagonalen. Beschreibe die entstandenen Figuren.
 Vergleiche auch ihre Größe.

Kopiervorlage H

Raum und Form Sekundarstufe I


Geometrische Objekte

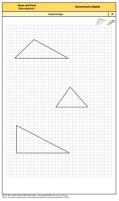
Legen von Parallelogrammen aus zwei kongruenten Dreiecken

20

Material: Schere, Kopiervorlage J

- Schneide alle Dreiecke aus.
- Je zwei Dreiecke gehören zusammen, wenn sie kongruent (deckungsgleich) sind. Finde die zusammengehörigen Dreiecke.
- Lege die beiden zusammengehörenden Dreiecke so zusammen, dass ein Parallelogramm entsteht.
- Untersuche, ob man die zusammengehörenden Dreiecke auch anders zu einem Parallelogramm zusammenlegen kann.

Kopiervorlage J



Vergleichen der Flächeninhalte von Parallelogrammen und Dreiecken

21

Material: Kopiervorlage K

- Vervollständige die Dreiecke so, dass Parallelogramme entstehen.
- Vergleiche jeweils den Flächeninhalt eines Dreiecks mit dem des zugehörenden Parallelogramms.

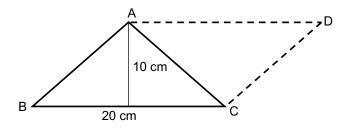
Kopiervorlage K

Die Formel für den Flächeninhalt eines Parallelogramms lautet: $A = g \cdot h_{g.}$

Die Formel für den Flächeninhalt eines Dreiecks lautet: $A = \frac{1}{2} \cdot g \cdot h_g$

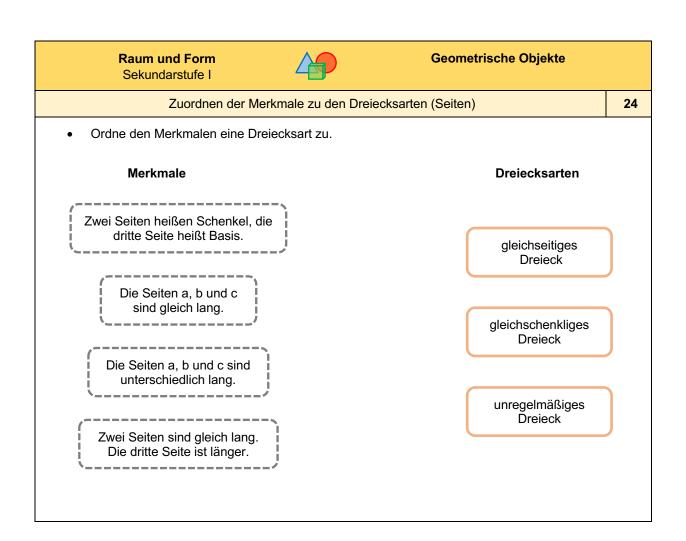
• Erkläre den Zusammenhang zwischen diesen beiden Formeln.

Raum und Form / Messen Sekundarstufe I



Geometrische Objekte

Berechnen des Flächeninhalts von Dreieck und Parallelogramm


22

 Berechne den Flächeninhalt des abgebildeten Parallelogramms ABCD und den des Dreiecks ABC.

Skizze nicht maßstabsgerecht

Geometrische Objekte **Raum und Form** Sekundarstufe I Zuordnen der Merkmale zu den Dreiecksarten (Winkel) 23 Ordne den Merkmalen eine Dreiecksart zu. Merkmale **Dreiecksarten** stumpfwinkliges Alle Innenwinkel sind gleich Dreieck groß. Einer der Innenwinkel ist größer als 90°. rechtwinkliges Dreieck Einer der Innenwinkel ist genau 90°. spitzwinkliges Dreieck Alle Innenwinkel im Dreieck sind kleiner als 90°.

25

Material: Schere, Kopiervorlage L

- Schneide die Karten aus.
- Ordne den Dreiecksarten die Merkmale zu.

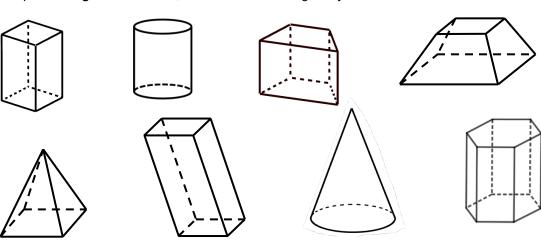
Zusatzauftrag:

Kann es ein gleichseitiges rechtwinkliges Dreieck geben?
 Begründe.

Kopiervorlage L

Raum und Form Sekundarstufe I

Geometrische Objekte Modellieren


Erkennen von (geraden) Prismen

26

- Prüfe, ob die folgenden Körper Prismen bzw. gerade Prismen sind.
- 1. Gibt es eine eckige Grund- und eine eckige Deckfläche?
 - 2. Sind Grund- und Deckfläche parallel zueinander?
 - 3. Sind Grund- und Deckfläche kongruent zueinander (deckungsgleich)?
 - 4. Besteht die Mantelfläche aus Rechtecken?

Ein Körper ist ein **Prisma**, wenn die ersten drei Fragen mit *ja* beantwortet werden.

Ein Körper ist ein **gerades Prisma**, wenn auch die 4. Frage mit *ja* beantwortet werden kann.

Geometrische Objekte Modellieren

Erkennen von Prismen in realen Objekten

27

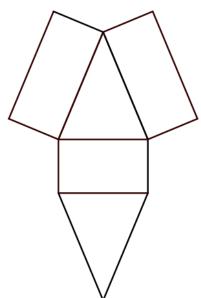
Material: Verschiedene Verpackungen, z. B. von Teebeuteln, Pralinen, Käse*

Betrachte die Verpackungen.

• Begründe bei jeder, ob es sich um ein Prisma handelt oder nicht.

* Alternativ kann auch nach Bildern solcher Verpackungen im Internet gesucht werden.

Raum und Form Sekundarstufe I


Geometrische Objekte Modellieren

Erkennen von Kanten (Prisma mit dreieckiger Grundfläche)

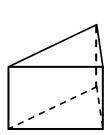
28

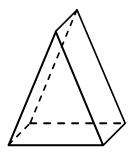
 Betrachte das Prismennetz. F\u00e4rbe die Kanten, die beim Zusammenfalten aufeinandertreffen, mit der gleichen Farbe oder bezeichne sie mit dem gleichen Buchstaben.

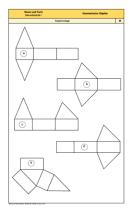
Hilfe: Öffne den Link

https://www.geogebra.org/m/xckzcmcd oder öffne die Webadresse mit dem QR-Code. Bewege den Punkt auf dem Schieberegler im linken Bild. Dadurch klappt das Netz des Prismas langsam auf.

Geometrische Objekte Argumentieren


Erkennen von Netzen (Prismen mit dreieckiger Grundfläche)


29


Material: Kopiervorlage M, Schere oder Lineal

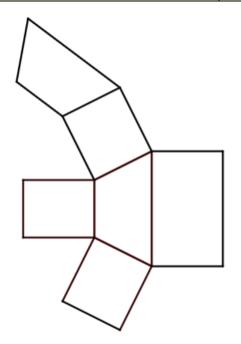
Es ist zweimal das gleiche Prisma mit dreieckiger Grundfläche (liegend und stehend) dargestellt.

- Entscheide, welche der Netze (auf der Kopiervorlage) zu dem Prisma passen. Du kannst die Seiten nachmessen oder die Netze ausschneiden und zusammenfalten.
- · Begründe deine Entscheidung.

Kopiervorlage M

Bild: "Zwei Prismen mit dreieckiger Grundfläche", Dahlke für LISUM, cc by sa 4.0

Raum und Form Sekundarstufe I


Geometrische Objekte Modellieren

Erkennen von Kanten (Prisma mit viereckiger Grundfläche)

30

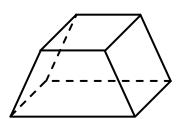
 Färbe die Kanten, die beim Zusammenfalten aufeinandertreffen, mit der gleichen Farbe oder bezeichne sie mit dem gleichen Buchstaben.

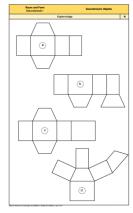
Hilfe: Öffne den Link https://www.geogebra.org/m/uera26x oder öffne die Webadresse mit dem QR-Code.

Bewege den Punkt auf dem Schieberegler im linken Bild. Dadurch klappt das Netz des Prismas langsam auf.

Geometrische Objekte Argumentieren

Erkennen von Netzen (Prismen mit viereckiger Grundfläche)


31


Material: Kopiervorlage N, Schere oder Lineal

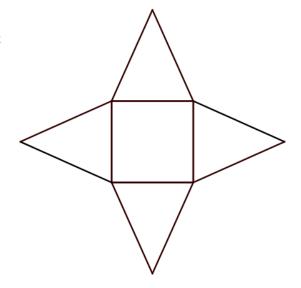
Es ist zweimal das gleiche Prisma mit viereckiger Grundfläche (liegend und stehend) dargestellt.

- Entscheide, welche der Netze (auf der Kopiervorlage) zu dem Prisma passen. Du kannst die Seiten nachmessen oder die Netze ausschneiden und zusammenfalten.
- · Begründe deine Entscheidungen.

Kopiervorlage N

Bild: "Prismen", Reblin für LISUM, cc by sa 4.0

Raum und Form Sekundarstufe I


Geometrische Objekte Modellieren

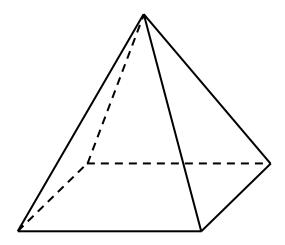
Erkennen von Kanten (Pyramide)

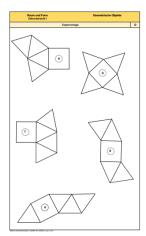
32

 Färbe die Kanten, die beim Zusammenfalten aufeinandertreffen, mit der gleichen Farbe oder bezeichne sie mit dem gleichen Buchstaben.

Hilfe: Öffne den Link https://www.geogebra.org/m/kmusab3f oder öffne die Webadresse mit dem QR-Code.

Bewege den Punkt auf dem Schieberegler im linken Bild. Dadurch klappt das Netz des Prismas langsam auf.


Geometrische Objekte Argumentieren


Erkennen von Netzen (Pyramide)

33

Material: Kopiervorlage O, evtl. Schere

Es ist eine gerade Pyramide mit quadratischer Grundfläche dargestellt.

Kopiervorlage O

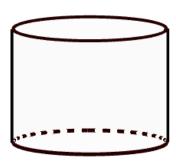
In der Kopiervorlage sind verkleinerte Netze dargestellt.

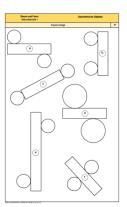
 Welche der dargestellten Netze ergeben eine solche Pyramide? Begründe deine Entscheidungen.

Tipp: Du kannst die Netze auch ausschneiden und zusammenfalten.

Bild "Pyramide", Dahlke für LISUM, cc by sa 4.0

Raum und Form Sekundarstufe I


Geometrische Objekte Argumentieren


Erkennen von Netzen (Zylinder)

34

Material: Kopiervorlage P, evtl. Schere

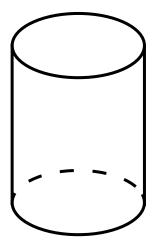
Es ist ein Kreiszylinder dargestellt.

Kopiervorlage P

In der Kopiervorlage sind verkleinerte Netze dargestellt.

 Welche der dargestellten Netze ergeben Kreiszylinder? Begründe deine Entscheidungen.

Tipp: Du kannst die Netze auch ausschneiden und zusammenfalten.


Vergleichen von Zylinder und Prisma

35

 $\label{thm:constraint} \mbox{ Dargestellt sind ein gerader Kreiszylinder und ein gerades dreiseitiges Prisma. }$

Vergleiche beide Körper.

- Nenne mindestens einen Unterschied.
- Nenne möglichst viele Gemeinsamkeiten.

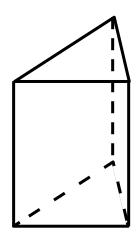
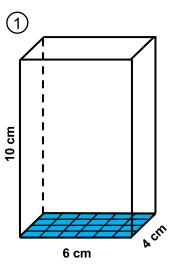
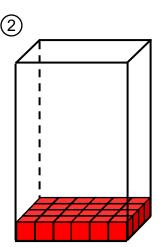
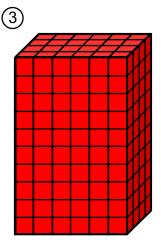


Bild: "Zwei Körper", Reblin für LISUM, cc by sa 4.0

Raum und Form / Messen Sekundarstufe I



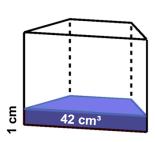

Geometrische Objekte


Bestimmen des Prismenvolumens mithilfe von Würfeln

36

• Ermittle den Flächeninhalt der Grundfläche (Bild 1) und das Volumen der untersten Schicht (Bild 2).

- Beschreibe, wie du vorgegangen bist.
- Vergleiche die beiden Werte. Was ist gleich, was ist unterschiedlich?
- Warum ist das so? Erkläre.
- Ermittle nun das Volumen des Quaders (Bild 3). Beschreibe auch hier, wie du vorgegangen bist.


Bild: "Drei Prismen", Dahlke für LISUM, cc by sa 4.0

Raum und Form / Messen Sekundarstufe I Bestimmen der Grundfläche der Schicht 37

Mika sagt: "Wenn die untere blaue Schicht ein Volumen von 30 cm³ hat, dann hat die Grundfläche des Prismas einen Flächeninhalt von 30 cm²."

30 cm³

Wie groß sind die Grundflächen der beiden unteren Prismen?

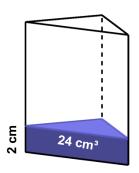
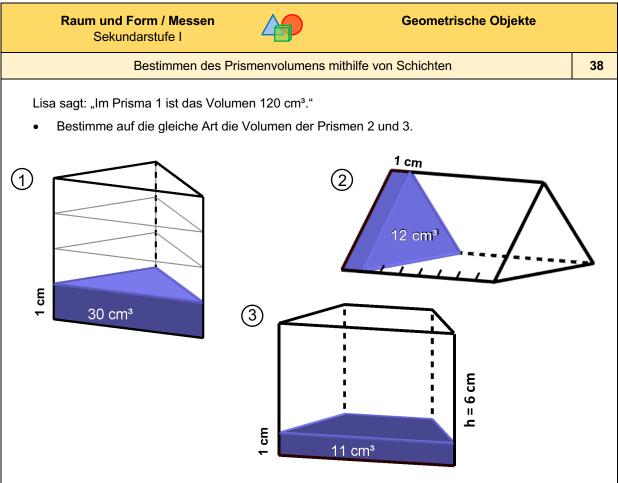
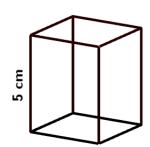
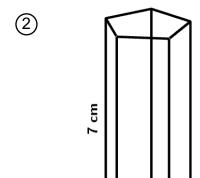



Bild: "Drei Prismen mit beschrifteten Schichten", Dahlke für LISUM, erstellt mit GeoGebra, cc by sa 4.0



39


Erklären der Volumenformel für Prismen

• Färbe die Grundfläche der beiden Prismen.

Flächeninhalt der Grundfläche = 15 cm²

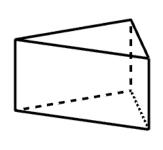
• Erkläre, warum man das Volumen eines Prismas mit der Formel

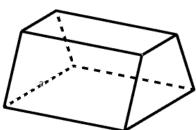
Volumen = Grundfläche • Höhe

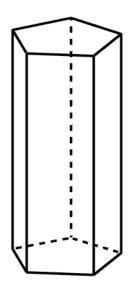
berechnen kann.

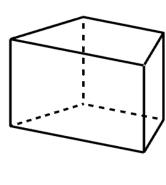
Bild: "Zwei Prismen", Dahlke für LISUM, erstellt mit GeoGebra, cc by sa 4.0

Raum und Form Sekundarstufe I


Geometrische Objekte


Finden von Grundflächen und Höhen im Prisma


40


Material: Verschiedene Prismenmodelle

• Markiere in jedem Prisma die Grundfläche und die Höhe mit zwei unterschiedlichen Farben.

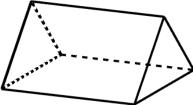


Bild: "Fünf Prismen", Dahlke für LISUM, erstellt mit GeoGebra, cc by sa 4.0

Berechnen des Volumens eines Prismas (1)

Lisa sagt: "Man benutzt zur Berechnung des Volumens von Prismen die Formel $V = A_G \cdot h$."

- $\bullet\,$ Zeige die Grundfläche und erkläre, wie man ihren Flächeninhalt A_G berechnet.
- Zeige die Körperhöhe h.
- Berechne das Volumen des abgebildeten Prismas.

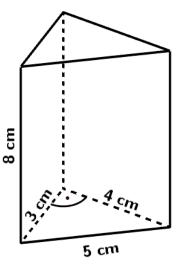
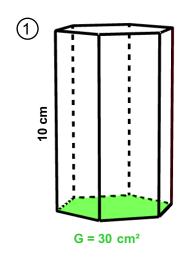


Bild: "Prisma mit Beschriftung", für LISUM, erstellt mit GeoGebra, cc by sa 4.0

Raum und Form / Messen Sekundarstufe I


Geometrische Objekte

Berechnen des Prismenvolumens mit vorgegebener Grundfläche

42

41

 Berechne das Volumen der Prismen. Der Flächeninhalt G der grünen Grundfläche ist schon gegeben.

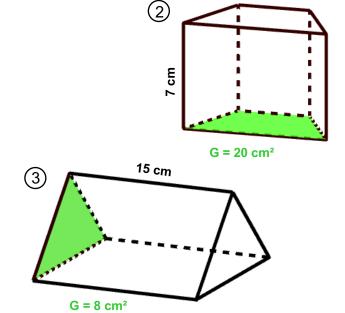
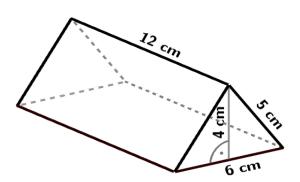


Bild: "Drei Prismen mit Beschriftung", Dahlke für LISUM, erstellt mit GeoGebra, cc by sa 4.0

Raum und Form / Messen Sekundarstufe I



Geometrische Objekte

Berechnen des Volumens eines Prismas (2)

43

- Markiere und berechne die Grundfläche.
- Zeige die Körperhöhe.
- Berechne das Volumen.

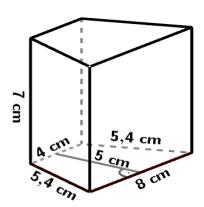
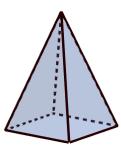
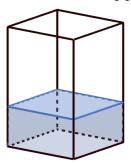


Bild: "Prismen mit Bemaßung", Dahlke für LISUM, erstellt mit GeoGebra, cc by sa 4.0

Raum und Form / Messen Sekundarstufe I


Geometrische Objekte


Vergleichen von Volumina

44

Material: Zwei hohle Körpermodelle (ein Prisma und eine Pyramide mit deckungsgleicher Grundfläche und gleicher Höhe), Wasser oder Sand

- Halte die Pyramide und das Prisma aneinander und zeige, dass die Grundflächen und die Körperhöhen gleich groß sind.
- Fülle die Pyramide vollständig mit Wasser (oder Sand).
- Fülle dann das Wasser (den Sand) in das Prisma.
- Wie oft muss man diesen Vorgang wiederholen, bis das Prisma vollständig gefüllt ist?

Ergänze die Gleichung.

 $|\cdot V_{Pyramide} = V_{Prisma}$

Raum und Form / Messen Sekundarstufe I

Geometrische Objekte

Angeben des richtigen Formelterms

45

Lisa hat herausgefunden, dass folgende Gleichung richtig ist, wenn die Pyramide und das Prisma die gleiche Grundfläche und die gleiche Höhe haben:

$$3 \cdot V_{Pyramide} = V_{Prisma}$$

• Kreuze den Term an, der die nachfolgende Gleichung richtig ergänzt.

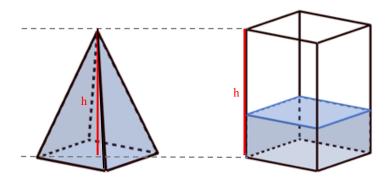
$$V_{Pyramide} = ...$$

- □ 3 · V_{Prisma}
- \Box $\frac{1}{3} \cdot V_{Prisma}$
- \square $V_{Prisma} 3$

Bild: "Pyramide und Prisma", Dahlke für LISUM, erstellt mit GeoGebra, cc by sa 4.0

Raum und Form Sekundarstufe I

Geometrische Objekte Argumentieren


Aufstellen der Volumenformel für Pyramiden

46

Ali weiß, dass für das Volumen von Pyramiden gilt: $V_{Pyramide} = \frac{1}{3} \cdot V_{Prisma}$, wenn die Pyramide und das Prisma die gleiche Grundfläche und die gleiche Höhe haben.

Lisa antwortet: "Dann gilt also auch: $V_{Pyramide} = \frac{1}{3} \cdot A_G \cdot h$."

• Warum hat Lisa Recht? Zeige an den Bildern.

Die Grundfläche und die Körperhöhe sind bei beiden Körpern gleich.

Raum und Form / Messen Sekundarstufe I

Geometrische Objekte

47

Finden von Körpern mit gleich großem Volumen

• Finde Körper mit gleich großem Volumen. Beschreibe, wie du dabei vorgehst.

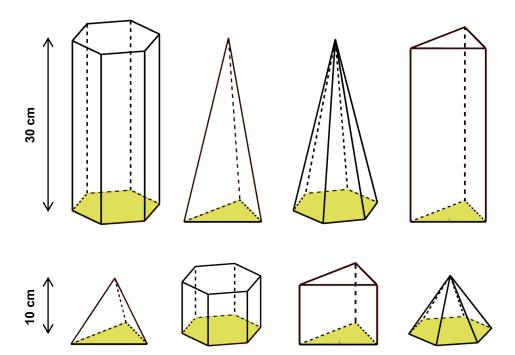


Bild: "Vier Pyramiden und vier Prismen", Dahlke für LISUM, erstellt mit GeoGebra, cc by sa 4.0

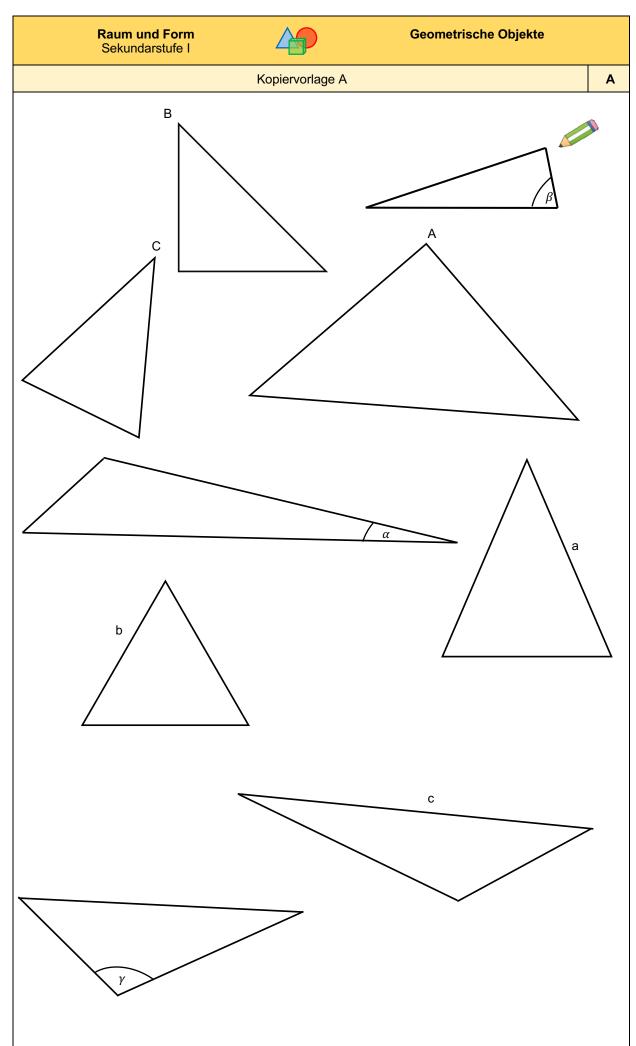
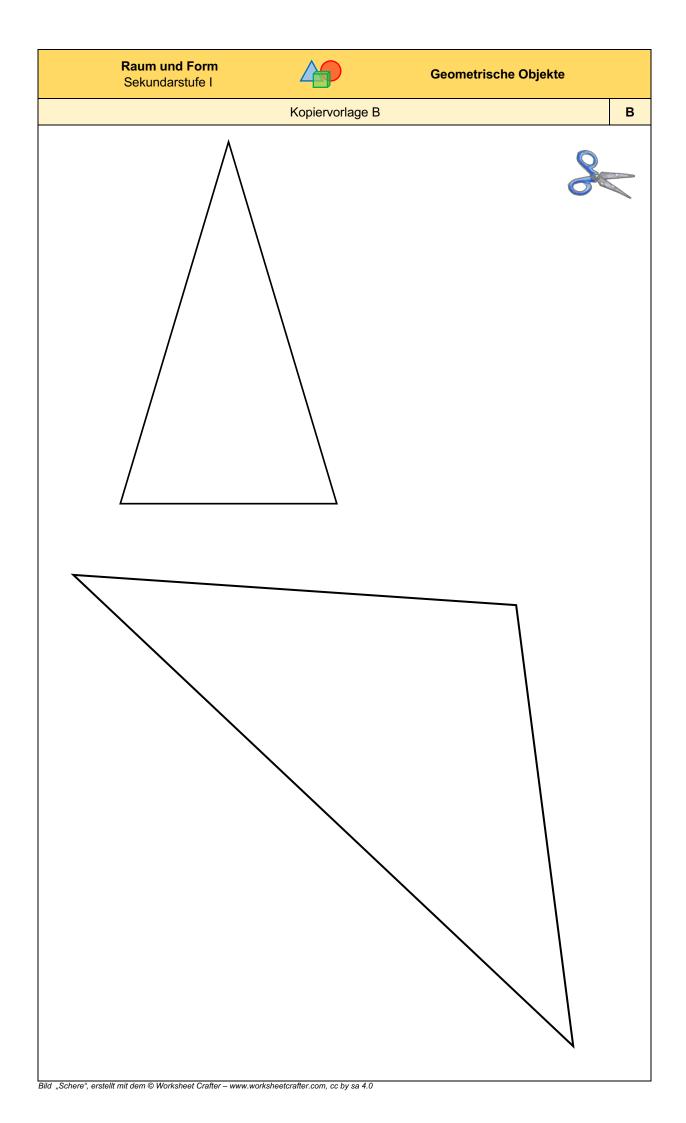
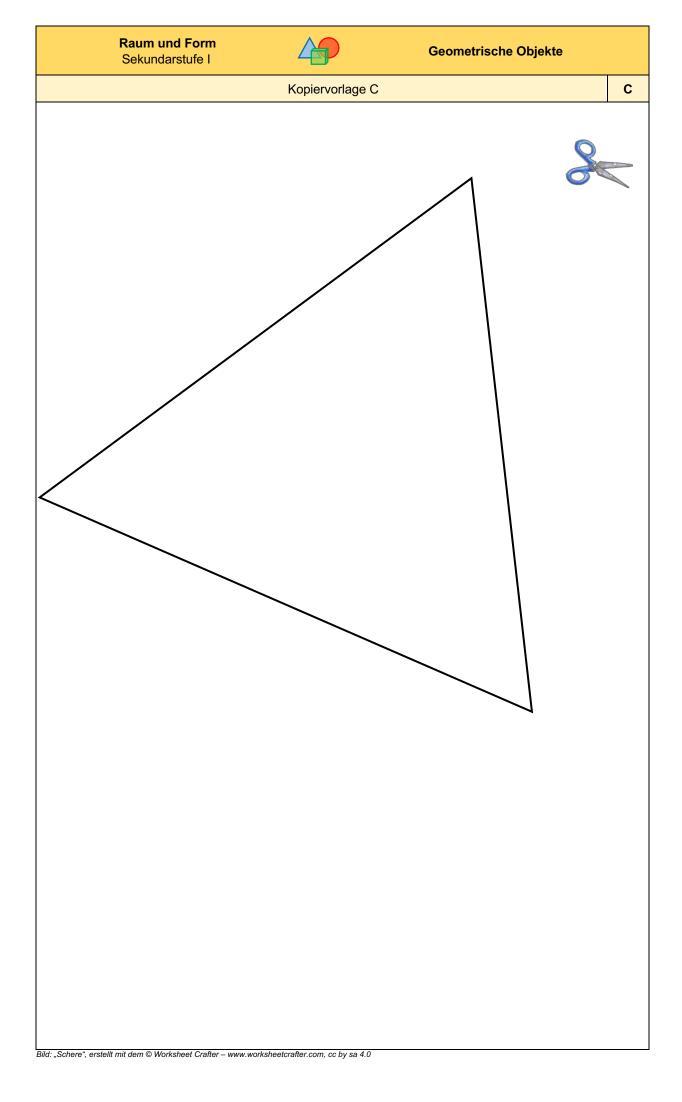
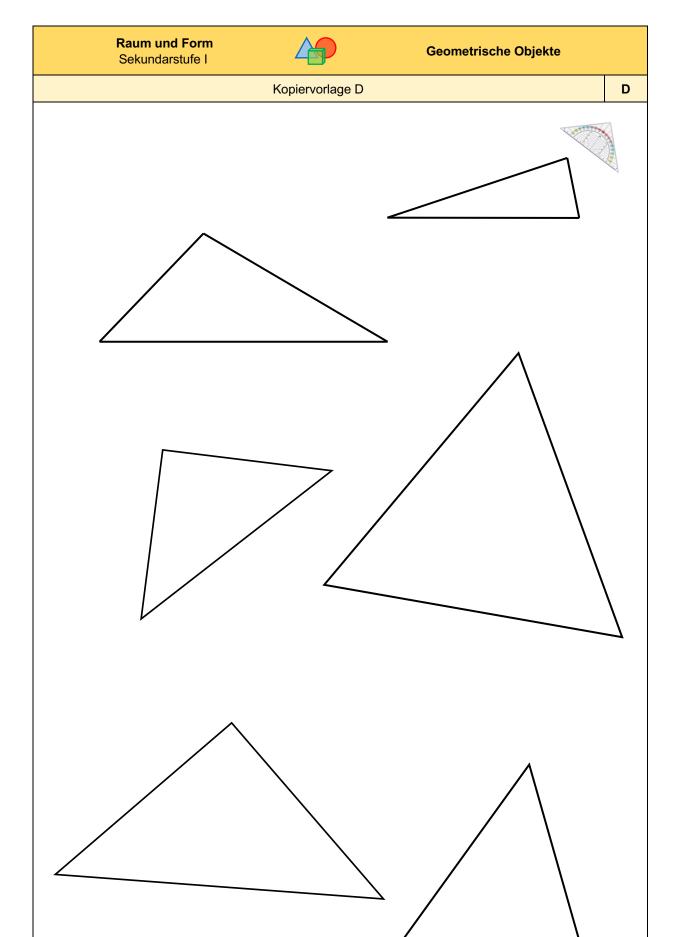
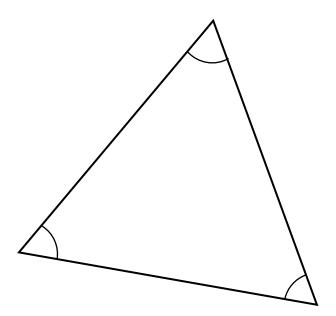
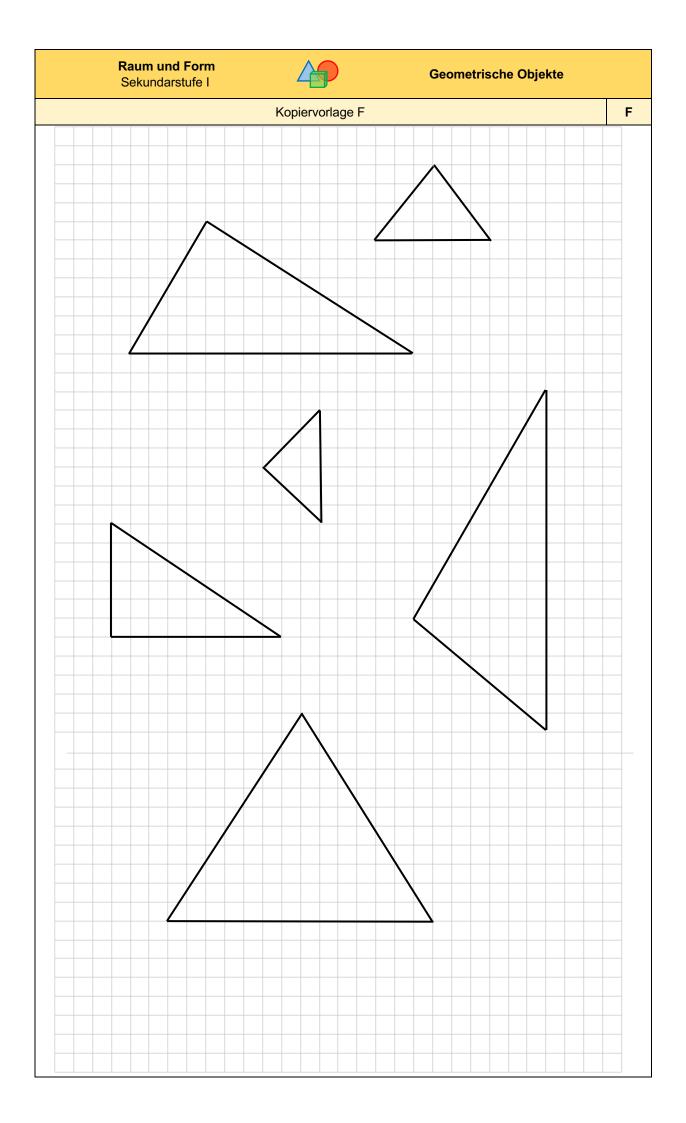
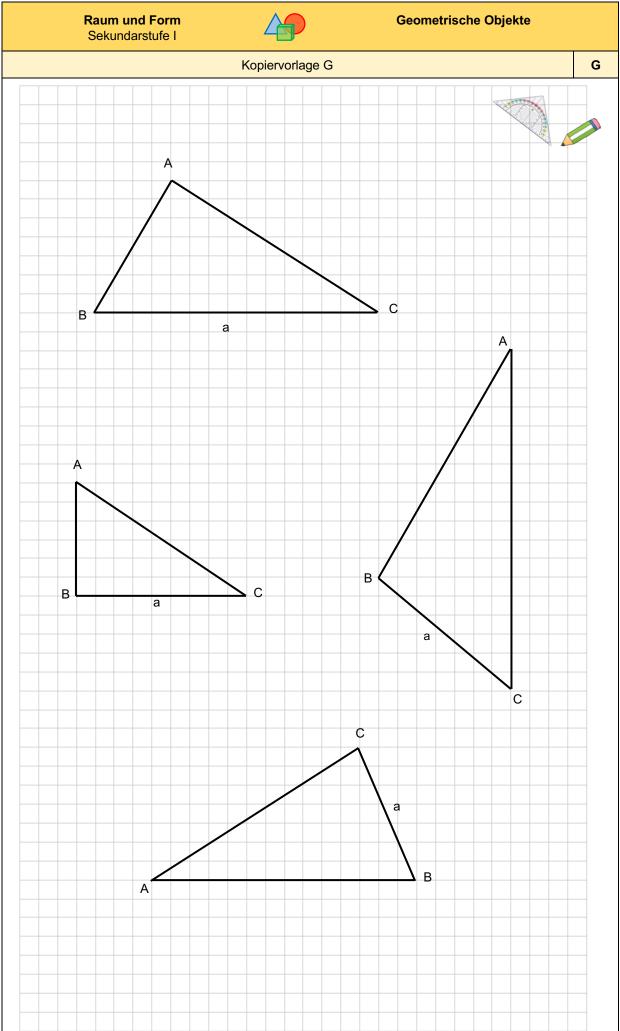





Bild: "Dreiecke", Diebold für LISUM, 2022, cc by sa 4.0, Bild 37 "Stift", erstellt mit dem © Worksheet Crafter – www.worksheetcrafter.com_cc by sa 4.0

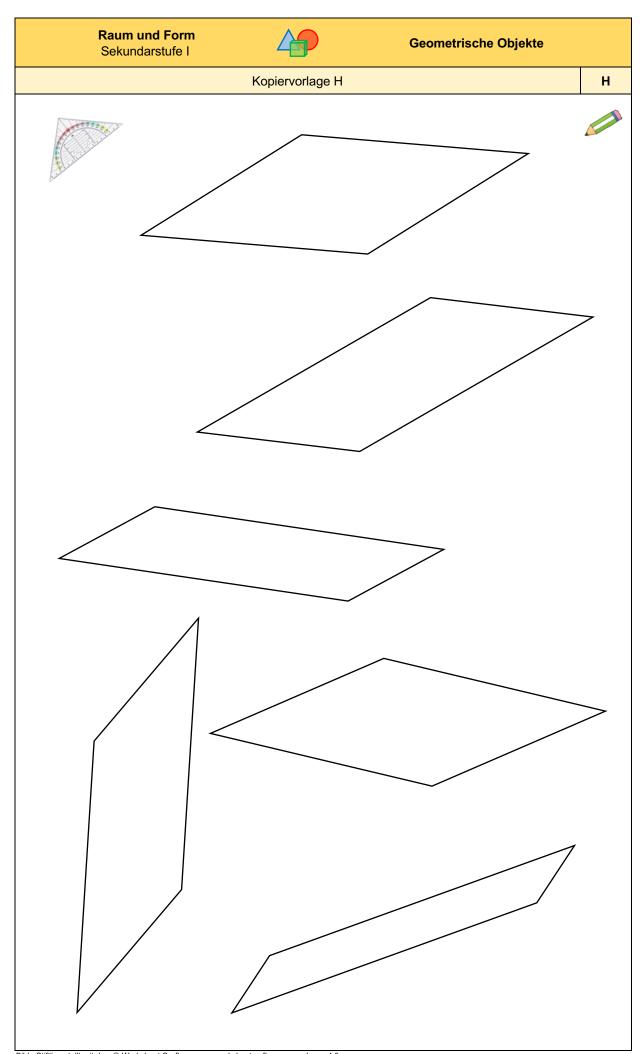
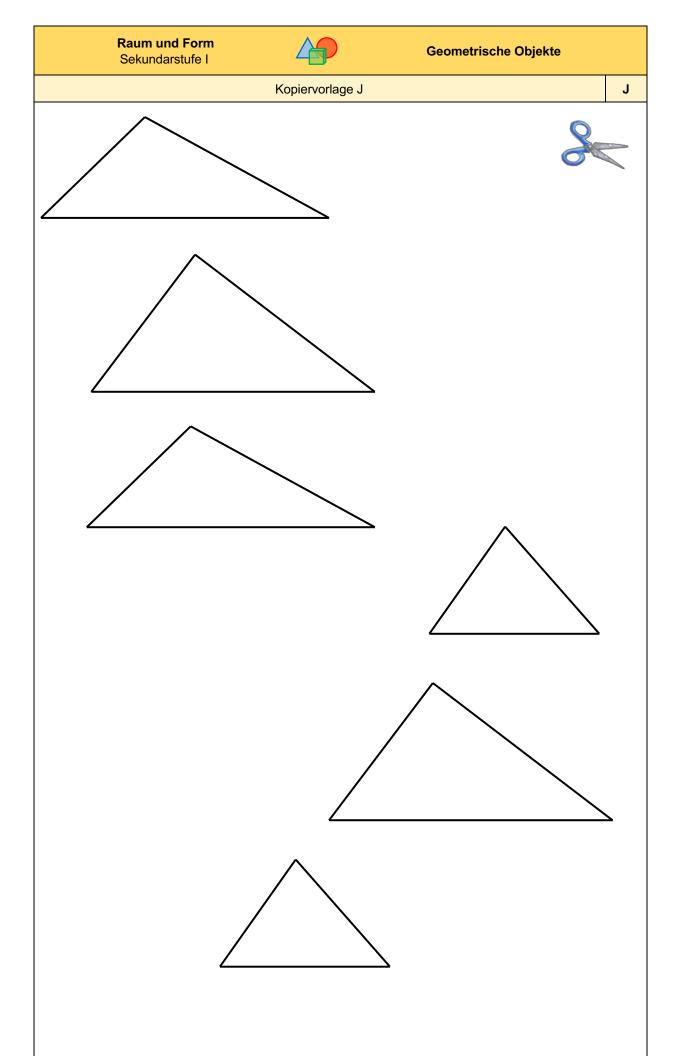
L. Bild: "Geodreieck", © mbnachhilfe_de, 2015. Geodreieck, pixabay-lizenz. Verfügbar unter: https://pixabay.com/de/illustrations/geodreieck-geometrie-mathematik-1016726, Zugriff am: 6.7.2020

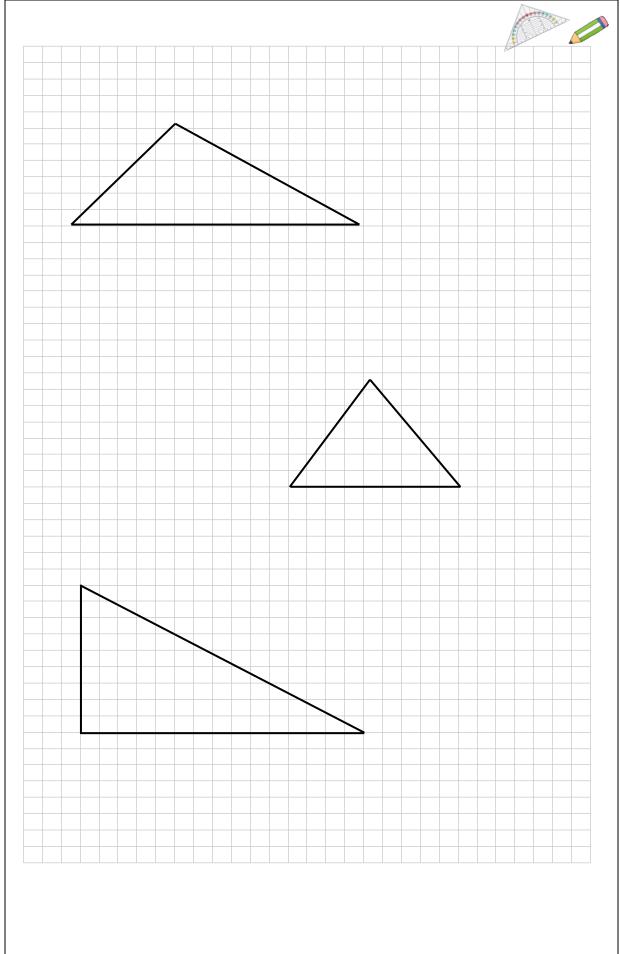

Raum	und	Form
Sekur	dars	tufe I




Kopiervorlage E

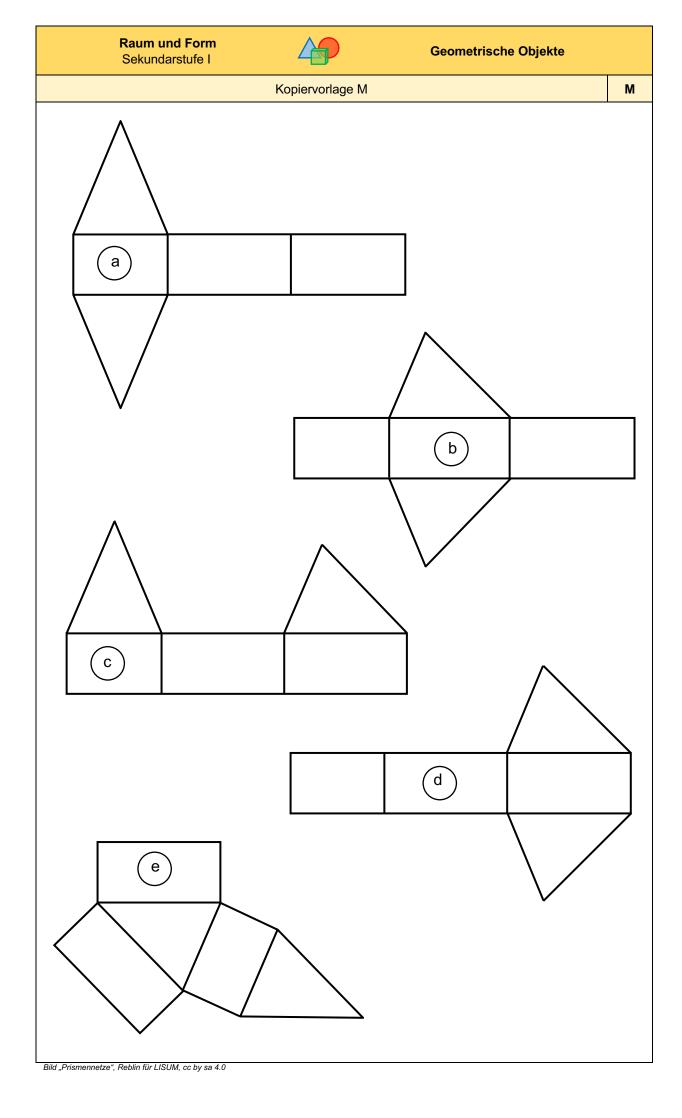
Ε


Bild: "Stift", erstellt mit dem © Worksheet Crafter – www.worksheetcrafter.com, cc by sa 4.0
Bild: "Geodreieck", © mbnachhilfe_de, 2015. Geodreieck, pixabay-lizenz. Verfügbar unter. https://pixabay.com/de/illustrations/geodreieck-geometrie-mathematik-1016726, Zugriff am: 6.7.2020

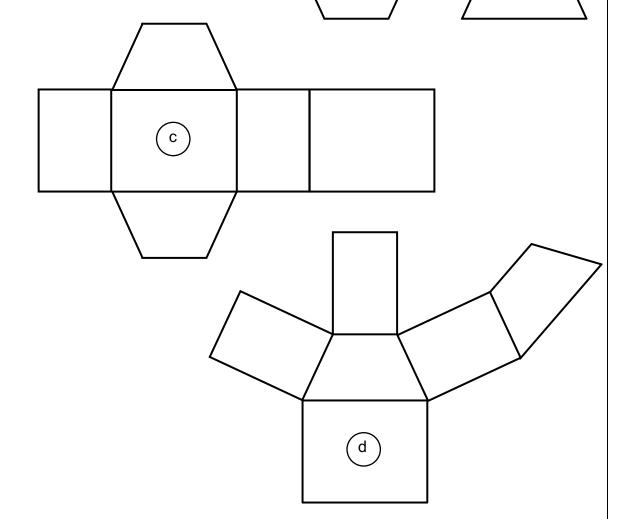
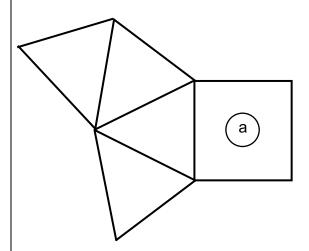
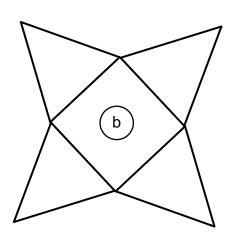
Kopiervorlage K

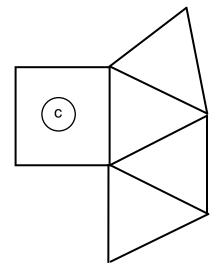
K

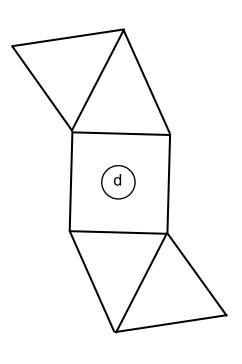


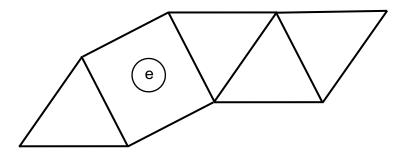
Kopiervorlage L

gleichschenkliges rechtwinkliges Dreieck	Alle Winkel sind gleich groß.	
spitzwinkliges gleichschenkliges Dreieck	Alle Seiten sind gleich lang.	
stumpfwinkliges gleichschenkliges Dreieck	Die Seiten heißen Katheten und Hypotenuse.	
rechtwinkliges unregelmäßiges Dreieck	Ein Winkel ist 90° groß.	
gleichseitiges spitzwinkliges Dreieck	Zwei Seiten sind gleich lang und alle Winkel sind spitze Winkel.	
	Das Dreieck hat zwei 45°- Winkel und einen 90°- Winkel.	
	Die Seiten heißen Basis und Schenkel.	
	Die Hypotenuse ist auch die Basis.	


Bild "Prisma mit viereckiger Grundfläche", Dahlke für LISUM, cc by sa 4.0


Kopiervorlage O


0

